Q	Question		Expected Answers		Additional Guidance
1					
	а		an eV is the energy acquired by an electron accelerated/moves through a p.d. of 1 V	B1	
			$1 \text{ eV} = 1.6 \text{ x } 10^{-19} \text{ J}$	B1	
	b	i	300 (eV)	B1	1 mark if write correct answers on wrong lines
			$4.8 \times 10^{-17} (J)$	B1	ecf for (first answer) x 1.6 x 10 ⁻¹⁹
					e.g. 7.68 x 10 ⁻³⁶ using 4.8 x 10 ⁻¹⁷
		ii	$1/2$ mv ² = 4.8 x 10 ⁻¹⁷ \Rightarrow v ² = 9.6 x 10 ⁻¹⁷ / 9.1 x 10 ⁻³¹ (= 1.06 x 10 ¹⁴)	M1	allow 1 mark only for $v^2 = 2 \times b(i) / 9.1 \times 10^{-31}$ if
			$v = 1.03 \times 10^7 \text{ (m s}^{-1})$	A1	b(i) incorrect
					allow 1.0 x 10 ⁷ , 1 x 10 ⁷ is not acceptable
	С	i	Electrons are observed to behave as waves/show wavelike	B1	accept by being diffracted (by a crystal
			properties		lattice)/AW
			where the electron wavelength depends on its speed/momentum	B1	accept de Broglie eqn with m,v or p defined
		ii	$\lambda = h/mv = 6.63 \times 10^{-34}/(9.1 \times 10^{-31} \times 1.03 \times 10^{7})$	C1	allow 1 mark for 3.9 or 4.0 x 10 ⁻¹⁴ (m) caused
				A1	by subs m _p for m
			$= 7.1 \times 10^{-11} (m)$		allow 7.3 x 10 ⁻¹¹ (m)
			Total question 6	10	

Q	Question		Expected Answers		Additional Guidance
2					
	а	i	a quantum/lump/unit/packet/particle of (e-m) energy/light	B1	
		ii	all wavelengths/frequencies are present (in the radiation)/AW	B1	accept colours
	b	i	1 infra red	B1	
			2 the bulb of the lamp is hot	B1	
		ii	5/100 x 24 = 1.2 W	C1	allow 2 marks if forgotten 5% and obtain
			$n = 1.2/4 \times 10^{-19}$	C1	6 x 10 ¹⁹
			$= 3.0 \times 10^{18}$	A1	allow 3 x 10 ¹⁸ – no SF as estimate
	С	i	7° violet/blue	B1	not purple
			12° red	B1	
		ii	$d = 1/3 \times 10^5 = 3.3 \times 10^{-6} \text{ m}$	B1	with d = 3×10^{-6} m $\theta = 10.4^{\circ}$ give 2 out of 3
			$\sin \theta = \lambda/d = 5.4 \times 10^{-7}/3.3 \times 10^{-6} (= 0.162)$	M1	ecf incorrect value of d substituted correctly,
			$\theta = 9.3^{\circ}$ or 9.4° do not accept 9°	A1	scores 1 out of 3
			Total question 7	12	

Question		Expected Answers	М	Additional Guidance	
3		·			
а	i	vertical arrow upwards from ground state to zero level or above	B1		
	ii	21.8 x 10 ⁻¹⁹ (J)	B1	no ecf from (i); ignore sign	
b	i	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/4.9 \times 10^{-7}$	M1	accept use of 6.6 instead of 6.63 which can	
		$= 4.06 \times 10^{-19} (J) \text{ or } 4.1 \times 10^{-19} (J)$	A1	round down answer to 4.0(4)	
	ii	vertical arrow downwards between n = 4 to n = 2 levels	B1		
С		some photons will be <u>absorbed</u>	B1	not hits	
		hydrogen atoms become excited	B1	allow electron moves up energy levels	
		(excited) hydrogen atoms re-emit photons	B1		
		the photon energy is equal to the transition $n = 1$ to $n = 3$	B2	NB full marks = lines 1 + 4 or 1 + 2 + 3	
		Total question 8	8		

Question		on	Expected Answers		Additional Guidance
4					
	а	i	paths spread out after passing through a gap or around an obstacle/AW	B1	
		ii	wavelength of electrons must be comparable/of the order of magnitude of the atomic spacing	M1 A1	allow electrons behave as waves/AW allow must be about 10 ⁻¹⁰ m
	b		$\lambda = h/mv$ $v = 6.6(3) \times 10^{-34} / 9.1(1) \times 10^{-31} \times 1.2 \times 10^{-10}$ $= 6.0 \text{ or } 6.1 \times 10^6 \text{ (m s}^{-1})$	C1 M1 A1	mark for selecting formula correct manipulation and subs. shown give all 3 marks for answers to 3 figs or more: i.e. 6.04, 6.06 or 6.07
	С	i	$eV = \frac{1}{2}mv^2$ $V = mv^2/2e = 9.1 \times 10^{-31} \times (6.0 \times 10^6)^2/2 \times 1.6 \times 10^{-19}$ $= 1.0(2) \times 10^2 (V)$	C1 C1 A1	mark for algebraic equation mark for correct substitution give 1 mark max for k.e. = 1.6(4) x 10 ⁻¹⁷ J using 6.1 gives 104 (V)
		ii	electrons should be repelled by cathode and/or attracted by anode or they will be attracted back to the cathode/slowed down if cathode positive	B1	award mark if answer indicates this idea
			Total question 8	10	

Question	Answer		Guidance	
5 (a)	$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{1.1 \times 10^{-6}}$ $E = 1.8 \times 10^{-19} \text{(J)}$	M1 A0	Values must be substituted Answer to 3sf is 1.81 x 10 ⁻¹⁹ (J)	
(b)	$m = \rho V = 8.1 \times 10^{-12} \times 4.5 \times 10^3 = (3.645 \times 10^{-8})$	C1		
	Thermalenergy gained = $(mc \Delta \theta) = 3.645 \times 10^{-8} \times 520 \times [1700 - 20]$ (= 0.0318)	C1		
	$1.81 \times 10^{-19} \times 6.3 \times 10^{19} \times t = 0.0318$		Allow: ecf from (a) and mass of titanium	
	$t = 2.8 \times 10^{-3}$ (s)	A1		
(c)	Thermal energy is conducted / transferred to the rest of titanium/metal	B1	Not: heat lost to surroundings	
	Photons are reflected / scattered from / not absorbed the titanium surface	B1		
(d)	(Photon) energy is converted into potential energy (rather than kinetic energy) OR Energy is used to change solid to liquid / phase (rather than increase kinetic energy) OR	B1	Allow: energy is used to overcome the forces between atoms / breakdown the crystal structure of titanium (rather than increase kinetic energy)	
	Energy provides (specific) latent heat of fusion (rather than increase kinetic energy)	_		
	Total	7		